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Abstract

This mini-review aims to summarize a growing body of literature on synaptojanin 1 (Synj1), a 

phosphoinositide phosphatase that was initially known to have a prominent role in synaptic vesicle 

recycling. Synj1 is coded by the SYNJ1 gene, whose mutations and variants are associated with an 

increasing number of neurological disorders. To better understand the mechanistic role of Synj1 in 

disease pathogenesis, we review details of phosphoinositide signaling pathways and the reported 

involvement of Synj1 in membrane trafficking with a specific focus on Parkinson’s disease (PD). 

Recent studies have tremendously advanced our understanding of Synj1 protein structure and 

function while broadening our view of how Synj1 regulates synaptic membrane trafficking and 

endosomal trafficking in various organisms and cell types. A growing body of evidence points 

to inefficient membrane trafficking as key pathogenic mechanisms in neurodegenerative diseases 

associated with abnormal Synj1 expression. Despite significant progress made in the field, the 

mechanism by which Synj1 connects to trafficking, signaling, and pathogenesis is lacking and 

remains to be addressed.
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1. Synj1 overview

In 1994, a then-unknown protein involved in synaptic vesicle endocytosis and recycling was 

found to interact with growth factor receptor-bound protein 2 (Grbp2); this unnamed protein 

was later labeled as the 145 kDa isoform (isoform b, NP_982271.2) of Synj1 [1]. Since then, 

another naturally-occurring isoform of Synj1 at 170 kDa (isoform a, NP_003886.3) has been 

discovered. While this isoform is widely dispersed throughout various tissues in the body, 
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the 145 kDa Synj1 protein is predominantly localized to the brain [2]. Synj1 is coded by the 

SYNJ1 gene on human chromosome 21q22.2 [3]. Synj1, as a member of the synaptojanin 

protein family, consists of three domains: suppressor of actin 1 (SAC1), 5′-phosphatase, 

and a proline-rich domain (PRD) [4] (Fig. 1). Unlike most proteins, Synj1 possesses two 

enzymatic domains for lipid homeostasis, and these domains are crucial for Synj1-mediated 

molecular signaling and membrane trafficking. In Drosophila and C. elegans, there is one 

synaptojanin gene required for viable organisms, as opposed to mammals, which require two 

[5,6].

Early research focused on unveiling the exact endocytic steps Synj1 is involved in and how 

each domain contributes to this process. In the past two decades, Synj1 abnormalities have 

been found to contribute to multiple neurological and neuropsychiatric diseases, such as 

PD, Alzheimer’s disease (AD), Down Syndrome (DS), autism, schizophrenia, and bipolar 

disorder [4,7–13] (Fig. 1). While the associations of SYNJ1 mutations or polymorphisms 

with many of the above disorders are still obscure or controversial, the field has seen a 

growing interest in investigating Synj1 irregularities in the pathogenesis of PD, which we 

will focus on in the latter part of this mini-review.

2. Membrane trafficking

Membrane trafficking includes essential processes such as endocytosis and exocytosis, 

whereby molecular cargo is transported, in vesicles, across the cell membrane into 

subcellular locations for function or degradation. Synj1, which regulates membrane resident 

phosphatidylinositol, has prompted robust investigation regarding its integral part in 

membrane trafficking. Additionally, while studies have focused on the role of Synj1’s 145 

kDa isoform in synaptic trafficking, recent research has shown promising insight into its 

significance in endosomal and autophagic trafficking.

2.1. Synaptic membrane trafficking

Synaptic membrane trafficking describes the recycling of membrane cargos in the 

synaptic vesicle (SV); it is an essential cellular process that regulates neurotransmission, 

where neurotransmitters are released from SVs and received by postsynaptic receptors. 

Altered synaptic transmission may contribute to Synj1-mediated neurodegeneration, and 

understanding how Synj1 regulates synaptic membrane trafficking will ultimately inform our 

understanding of pathogenic processes.

While overwhelming evidence supports the involvement of Synj1 in synaptic membrane 

trafficking, the exact biophysical step where Synj1 is involved is not entirely clear. 

Early electron microscopy (EM) analysis suggests that clathrin coat shedding is regulated 

by Synj1, as mouse brains without Synj1 exhibited an accumulation of clathrin-coated 

vesicles [3]. A study of C. elegans lacking the synaptojanin (unc 26) gene showed 

an accumulation of both clathrin-coated vesicles and clathrin-coated pits at the plasma 

membrane, suggesting an additional role of Synj1 in SV endocytosis [6], which may have 

been masked in mammalian synapses due to compensatory changes. Later analysis in Synj1

deficient models further supports the involvement of Synj1 in SV endocytosis [14–16]. This 

conclusion is not entirely surprising given the number of BAR proteins, such as endophilin 
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and amphiphysin, which interact with the PRD of Synj1 [17,18]. A later study suggests 

that in addition to the PRD, mutations in the two phosphatase domains also impair SV 

endocytosis [15]. Such impairment may be due to PRD dysfunction through intramolecular 

interaction of Synj1, which has been previously demonstrated [19–22]. It is also likely that 

phosphatidylinositol conversion is a crucial step for membrane curvature formation and the 

completion of endocytosis [23–25]. Supporting this idea, flash-and-freeze EM was recently 

used to demonstrate that Synj1, along with endophilin, is required for the neck formation 

of endocytic pits [26]. Notably, the study showed that the 5′-phosphatase, but not the 

SAC1-like phosphatase, is involved in this process.

Alternative models have been proposed regarding Synj1′s involvement in endocytosis. For 

example, the endocytic function of Synj1 may be carried out by the long isoform via 

binding to AP-2, clathrin, and Esp15, while the short isoform is recruited in the later 

stage for clathrin uncoating [27]. However, this hypothesis conflicts with the finding of 

poor 170 kDa isoform expression in the adult rat brain [2]. It thus remains unclear if the 

sequential recruitment of Synj1 isoforms is the predominant endocytic mechanism at the 

central synapse. Interestingly, while Synj1 has long been recognized to facilitate clathrin

mediated endocytosis, recent evidence reveals its role in ultrafast endocytosis [26]. This new 

data expands our traditional view of Synj1-mediated synaptic trafficking and reveals further 

information regarding the physiological role of Synj1.

2.2. Endosomal and autophagic trafficking

While Synj1’s role in synaptic trafficking has dominated the field since its identification, 

research has also indicated Synj1 expression in low levels in astrocytes [28,29] and that 

Synj1 substrates such as PI(3)P, PI(3,5)P2, and PI(4)P are prevalent lipids on intracellular 

membranes such as the autophagosome, ER and Golgi. In recent years, increasing research 

attention has probed the details of Synj1′s potential involvement in endosomal trafficking 

and autophagic function.

Among other developmental neural processes, endo-lysosomal sorting and trafficking of 

AMPA receptors are crucial to synaptic efficacy; an early study showed that Synj1 

deficiency affects AMPA receptor recycling [30–32]. The De Camilli group found that 

neurotransmission was adversely affected in Synj1-deficient hippocampal neurons, where 

they had greater numbers of surface-exposed AMPA receptors and possessed larger 

miniature excitatory postsynaptic current amplitudes than wild-type (WT) mice. Whether 

the recycling of other plasma membrane cargo proteins requires Synj1 remains unclear. In 

our recent study of the Synj1-deficient cortical astrocytes, we showed reduced levels of the 

membrane glucose transporter, GLUT1 [29]. Similarly, the transferrin receptors were shown 

to exhibit intracellular retention in Synj1-deficient conditions [33]. These results suggest that 

Synj1 may regulate different cargo proteins via different mechanisms. While some cargos 

exhibit membrane retention, others may suffer from poor membrane insertion when Synj1 is 

deficient.

As part of intracellular trafficking, the autophagy pathway is of particular interest in 

neurodegenerative disorders. Macroautophagy, or autophagy, is the process whereby cells 

degrade unwanted molecular components to maintain proper homeostasis by forming an 
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autophagosome. The autophagic contents are eventually degraded in the autolysosome 

when the autophagosome fuses with the lysosome. The multi-step autophagy pathway 

is complex: where Synj1 fits in remains elusive. The Verstreken group reported that 

the intact function of the SAC1 domain, which hydrolyzes the phosphate at the 3′ 
position of PI(3) P and PI(3,5)P2 [34–36], is important for autophagosome maturation 

[5,37]. Introducing the R258Q mutation, which nullifies SAC1 phosphatase action while 

leaving the 5′ phosphatase unaffected, in turn, diminished autophagosome maturation in 

presynaptic terminals of drosophila, likely through crowding of PI(3,5)P2 and its binding 

proteins [37]. A study from our lab using the Synj1+/− mouse model found enhanced LC3 

immunofluorescence and increased autophagy substrate, p62, in the brains of aged mice, 

suggesting a defect in autolysosomal degradation [21]. Consistently, we found increased 

basal level autophagosome and autolysosomes in Synj1 deficient astrocytes [29]. Supporting 

these findings, another group showed that Synj1-deficient zebrafish exhibited enlarged 

acidic vesicles, abnormal late endosomes, and disrupted autophagy in the inner cone 

segments, suggesting a significant role of Synj1 in the endolysosomal pathway [38]. A later 

study from the same group demonstrated that 5′ phosphatase domain, but not SAC1 domain, 

activity is required to rescue the abnormalities in the endosomal pathways, suggesting that 

PI(4,5)P2 is crucial to autophagic clearance, at least in zebrafish [39]. These studies indicate 

that Synj1 may influence the autophagy pathway at various steps, from autophagosome 

lipidation and maturation to autolysosomal degradation. The SAC1 and the 5′-phosphatase 

domains may be recruited sequentially to accomplish the clearance of autophagic content. 

However, this hypothesis requires further research providing comprehensive molecular 

details downstream of the Synj1 mutations and lipid alterations, which may elucidate the 

connections between Synj1 and autophagy machinery.

In contrast to the above Synj1-deficient models, there has been no evidence suggesting an 

altered autophagy pathway in the Synj1 over-expressors, such as the Ts65Dn mouse [40]. 

However, enlarged early endosomes were observed in multiple Synj1 overexpressing models 

[8,41,42]. These studies suggest that Synj1 expression level in an intact system requires 

fine-tuning to maintain the proper functions of membrane trafficking.

3. Clinical pathogenesis relevance

Since 2013, SYNJ1 autosomal recessive mutations, including R258Q, R459P, R839C, and 

L1406F, have been identified to result in comorbidities of early-onset Parkinsonism and 

epilepsy [9,35,43–46]. Patients typically have juvenile-onset and exhibit fast progression. 

The R258Q and R839C mutations primarily impair Synj1′s function in the phosphatase 

domains [21,35], while the L1406F mutation impacts Synj1′s molecular interaction; 

these associations have not yet been fully investigated. Subsequent studies have revealed 

additional SYNJ1 variants, such as R136*, Y888C, W843*, Q647R, and S1112T, resulting 

in either protein truncation or lack of protein expression [47,48] (Fig. 1). These variants are 

associated with severe intellectual disabilities and early-onset aggressive neurodegeneration, 

suggesting an essential role of Synj1 in maintaining the proper function of the brain.

In understanding the pathogenic mechanisms underlying these disease mutations, various 

animal models have been generated and investigated. In a recent study by Cao et al., 
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the authors showed that the Parkinsonism-related missense R258Q mutation in the SAC1 

domain impaired cortical neuron SV endocytosis after brief or prolonged synaptic activities. 

The amount of exocytosis was, however, not affected at various stimulations [14]. The mild 

synaptic defects do not fully explain the reduced lifespan and apparent motor deficits shown 

in the Synj1 R258Q knock-in (KI) mice. It is possible that the R258Q mutation disrupts 

synaptic transmission of a yet-unknown type of synapse other than the reported cortical 

synapse in a more profound way. For example, in our analyses of Synj1 heterozygous 

midbrain neurons, we found a significant slowing of the SV endocytosis rate [21], while 

heterozygous deletion of Synj1 is largely tolerated in cortical neurons and hippocampal 

neurons [15,21]. These results suggest that midbrain synapses could be more vulnerable 

to the R258Q disease mutation. In another study of the Synj1 truncation mutant zebrafish, 

the vestibulospinal reflex was significantly defective [49], consistent with the earlier finding 

of poor SV turnover in the ribbon synapses of the hair cells [50]. Whether the R258Q 

mutation has a profound effect on the vestibular system that contributes to posture control in 

zebrafish and mammalian models is yet to be examined. Alternatively, it is also likely that 

the mutation impairs other membrane trafficking events, such as autophagy [37], which is 

equally essential for cellular function and survival. To understand the relevant lipid signaling 

pathways for Parkinsonism, a more recent study examined another PD candidate gene, Sac2/

INPP5F, which specifically acts on PI(4)P; and its synergistic effect with the known SAC1 

mutation on SYNJ1 [51]. While Sac2 KO mice alone demonstrated no significant defects, 

mice with both the Synj1 R258Q mutation and Sac2 KO exhibited an exacerbated phenotype 

and survived no longer than three weeks with stunted growth [51]. These results suggest an 

essential role of PI(4)P metabolism in neurodevelopment and dopaminergic dystrophy.

It is worth noting that different model organisms could have varying responses to Synj1 

deletions/mutations. For example, unlike rodent cortical neurons, where SAC1 activity is 

necessary for normal SV recycling [14,15], the SYNJ1 R258Q mutation KI fly did not 

exhibit noticeable abnormalities in SV endocytosis compared to the WT [37,52]. Worm 

models then further surprise us. While they parallel the drosophila model in that the SAC1 

domain’s functionality is not required for effective synaptic recycling at the neuromuscular 

junction, the SAC1 domain’s physical presence is involved in coordinating the Synj1 and 

endophilin interaction [20]. The same study found even more intriguingly that worms with 

truncated Synj1 without the PRD encountered no difficulties in SV recycling, contrasting 

results obtained in other model organisms [5,53,54]. Another example is the kinase 

regulation of Synj1 activity [55]. Phosphorylation driven by Cdk5 inhibits the protein’s 

activity in rat brains [19], yet phosphorylation mediated by a different kinase, Dyrk1A, 

enhances Synj1 activity at the drosophila neuromuscular junction [19,52]. Therefore, it is 

worthwhile to investigate each Synj1 disease mutation in multiple synaptic systems and 

different animal models, especially human-derived cells. Investigations along this line would 

likely lead to identifying specific neuronal pathways implicated in disease pathogenesis. 

More interestingly, a recent study has suggested possible sex-dependent homeostasis for 

PIP2, the primary substrate of Synj1 [56]. As PD tends to afflict males over females in the 

population, it would be interesting to dissect the sex-dependent synaptic regulation when 

addressing disease mechanisms.
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4. Discussion

Our knowledge of Synj1 has seen robust growth in the past few decades. Although 

gaps regarding the precise mechanisms underlying Synj1-mediated membrane trafficking 

and Synj1-associated neurodegenerative diseases exist, there has been a growing body of 

evidence suggesting that the development of neurodegenerative diseases such as PD is 

correlated with endosomal trafficking issues, synaptic membrane trafficking issues, and 

sometimes both [33,57–59]. However, the mechanistic details of Synj1 function are still 

lacking; hence, our understanding of Synj1-mediated pathogenesis remains superficial, 

which calls for sustained research efforts.

One confounding factor in current Synj1 literature is the inconsistent results obtained 

through various model systems (summarized in Table 1). Future research, if provided cell 

type-specific analyses for Synj1, could bring more clarity. As we noted earlier, human cell 

models will be precious in elucidating disease mechanisms. Among the many disorders 

shown to associate with SYNJ1, PD has gained increasing credibility in recent years.

Much research is presently investigating the role of Synj1 in autophagic clearance in 

addition to its traditional role in synaptic trafficking. Importantly, for complex brain 

disorders like PD, Synj1 does not act alone. Other lipid kinases and phosphatases in the 

same phosphoinositide signaling pathway, as well as Synj1-associated molecules, could all 

contribute to defining the pathogenic course. Identifying these signaling partners through 

disease-based bioinformatics analyses can inform our understanding of Synj1′s roles in 

pathogenesis. In summary, future progress in the right direction will pave the way for us 

to pinpoint where Synj1 fits in membrane trafficking, signaling pathways, and ultimately 

pathogenesis.
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Fig. 1. The domain structures and identified mutations of Synj1 isoforms.
Both isoforms contain a SAC1 domain with phosphatase action on phosphatidylinositol 

4-phosphate (PI(4)P), phosphatidylinositol 3-phosphate (PI(3)P), and phosphatidylinositol 3, 

5- bisphosphate (PI(3,5)P2), a more selective 5′ phosphatase domain that predominantly 

dephosphorylates phosphatidylinositol 4, 5- bisphosphate (PI(4,5)P2) to PI(4)P, and a 

proline-rich domain (PRD), known to bind to multiple binding factors involved in 

endocytosis via SH3 domains, such as endophilin and amphiphysin. Other binding motifs 

with proteins like Esp15 and AP2 may vary between isoforms. SNPs in the introns [11] 

and postzygotic mosaic mutations [13] have also been reported for SYNJ1 associated with 

certain neuropsychiatric disorders but are not shown here. Created with assistance from 

BioRender.com.
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